Update on Mineral Nutrition of Dairy Cows

	1.	TI	h	е	P	e.	er	ic	C	li	С	T	a	b	le	9	
ů.																	, y He
ů	Be	1										B	ċ		0	÷	10 Ma
T. Ha	Ng											13 AJ	-14 51	7	15	17	14 34
HR K		31 St	## 74	ÿ	N Cr	28 Mit	ja Fu	17 Co	28 16	a Cu	ss In	31 Ge	na Ge	## As	34 50	28 Br	=
17 Rb	÷.	ан Ү	#E Dr	A1 ND	42 Mo	43 Te:	at Ru	48 Rh	#1 \$14	47 Ag	48 Cal	44 br	sa Sn	-21	-10	-00 1	54 34
N.G.	HE Bat	36.0	72 Hf	ri Ta	W	rs Re	11 Ok		P	TR Au	ate Hig	n.	47 Pb	12 81	H Po	an At	at Ro
ï.	n Ra	89-185	104 (81	ile CB	108 5g	itr Bh	100 Ha	No.	De	tes Riji	en ca	arra Ukat	FL FL	HIT Ump	-718 - L.V.	Unit Unit	110 Uax
		s: La	en Ce	sn Pr	na Nid	ai Pm	cr Sm	Eu	S4 Gd	es Th	86 Dy	ат На	es Er	an Tet	78 Yh	71 Lu	1
		sa Ac	an Th	Pa	32 1)	33 Np	M Pil	.13 Åth	28 Cat	-	n C	Es	TH FM	100 Mat	112. Big	-10 -11	

COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES **Bill Weiss**

Dept of Animal Sciences

Ohio Agricultural Research and Development Center Ohio State University Extension

Establishing Mineral "Requirements"

Effic. = 100% mg/d of absorbed mineral excreted, accreted in fetus, secreted in milk, and retained in new tissue A lot of uncertainty with respect to requirements

- 1. 'Maintenance' vs. health?
- 2. Milk secretion vs. milk synthesis?
- 3. Getting pregnant vs. being pregnant?

Uncertainty increases risk Formulation must consider risk

NRC 2001 Factorial Approach

Inputs

Feedstuffs Mineral concentration

Absorption coefficients

The AC is a weak link in formulating for available TM

- 1. Very difficult to measure
- 2. Diet and source dependent
 - e.g., high S diet and Cu
 - e.g., organic vs inorganic
- 3. Animal status dependent

Uncertainty increases risk Formulation must consider risk

For Minerals (and vitamins) substantial uncertainty exists

requirementsabsorption

You must evaluate: risk/reward

If you are wrong does it cost more to over or underfeed???

Think mg/day, not ppm

 at 20 ppm

 30 kg milk
 42 kg milk

 30 kg milk
 42 kg milk

 Cu intake
 490 mg
 560 mg (+70)

 Milk reqt
 102 mg
 129 mg (+27)

Concentrations of some TM should decrease as production increases; but concentrations may be higher for dry cows

Think mg/day, not ppm

	Dry cow	36 kg milk
Cu reqt*	175 mg	250 mg
Diet conc	14 ppm	10 ppm

Concentrations may be higher for dry cows

Basal feeds provide TM

Problems with the data

- Variable
- High sampling error
- Non-normal distribution

Get enough samples

Use median

Problems do not justify ignoring basal supply

Cu in Corn Silage

High TM in Basal Feeds

With high ash/and Fe - likely soil contamination - availability probably low

Without high ash

- could be interior metals
- availability may be similar to inorganic supplements

Capture value from high availability TMs

Copper sulfate = 25% Cu; AC = 0.05 Product X[®] = 25% Cu; Relative AC = 2X

 $(6/0.05)/0.25 = 480 \text{ mg } \text{CuSO}_4$ or $(6/(0.05 \times 2)/0.25 = 240 \text{ mg of Product } \times^{\text{@}}$

Copper (NRC = ~10-12 ppm)

Feed Enough !

Reduced mastitis Improved immunity Reduced RP

Don't feed too much ! Real world toxicity (i.e., death) Accumulation of liver Cu

Copper: Lots of Real World Antagonists

- 1. High Sulfur (Forage, DDG, water)
- 2. High reduced Fe (water)
- 3. Grazing (soil ingestion)
- 4. High Mo

NRC assumes minimal antagonism: Real world situations justify increased Cu

High S forage = Reduced Copper Stores

- Grass fertilized with Nothing NH3-Sulfate
 Forage S
 - 0.2% 0.5%

High S + normal Mo reduces Cu status

Remember Water

Water with 250 ppm Sulfate-S

= +0.1% dietary S

Water with 700 ppm Sulfate-S

= +0.3% dietary S

Take water samples occasionally

Sulfur (NRC = 0.2%)

Watch total S (diet + water)

- 1. Reduces copper availability
- 2. Reduces selenium availability
- 3. Reduces DCAD (milk and DMI)

Balemi et al., 2010 (NZVJ)

Cu Recommendations

No DDG, good water: 1.2 to 1.5X NRC (12 to 17 ppm TOTAL Cu when using CuSO₄)

 If using high bioavailability sources, feed less (balance for available mineral)

Lifetime moderate overfeeding of Cu may be causing problems !

Cu Recommendations

With Antagonists (eg. DDG, bad water ...)

- Maybe 2 to 3X NRC (20 to 30 ppm)
- Use proven 'High available' Cu
- Evaluate status (liver Cu from cull cows, biopsies)

Lifetime moderate overfeeding of Cu may be causing problems !

Se: 0.3 to 0.6 ppm added

Lactating cows, normal situation

- all or predominantly inorganic

Lactating cows, antagonists (e.g. S)

- substantial amount from Se-yeast

Dry cows (0.6 ppm)

- mix of inorganic and Se-yeast

Ivancic and Weiss, 2001

Probability of Disease vs Blood Se

Kommisrund et al., 2005

Whole blood = 0.16 - 0.18 ug/ml

Selenium Yeast

Benefits:

- 1.2 to 1.3 X more available
- Builds up body Se reserves
- Increases milk Se (humans)
- Transfer to fetus and colostrum
- Limited absorption antagonists

Disadvantage: Cost

Relative Response: Selenite vs Se-yeast

Data support NRC Zn (but you need a safety factor)

<u>Zn Requirement:</u> ~ 140 to 250 mg absorbed/day ~ 1000 to 1800 mg total/day

<u>Zn Recommendation:</u> 1.25 X NRC (with sulfates) ~ 55 to 65 ppm (with sulfates) 1 X (or less) with high available TM ~44 to 55 ppm

NEWER DATA QUESTION NRC FOR COBALT AND MANGANESE

	NRC, ppm	Suggested rate, ppm
Cobalt	0.11	0.2 to 0.9
Manganese (dry)	~18	50
Manganese (lactation)	~17	30 to 40

Use of Mineral balance to estimate maintenance requirement (diet, not TAR) Mn bal = -151 +0.26 X

Potassium (NRC = $\sim 1.1\%$)

Feeding more (~2%): The Good

- 1. Can improves milk fat (DCAD, not K)
- 2. Helps with heat stress (K)
- 3. Improves feed efficiency

Feeding More: The Bad

- 1. Reduces Mg absorption (K)
- 2. Increases manure and manure K

Higher K (DCAD) improves fat and FE

Harrison et al., 2012

K and Mg Absorption in Dairy Cows

Dietary K and Mg Absorption (dairy cows)

<u>Weiss, 2004</u>

Schonewille et al 2008

Slope = -7.5

Mostly lact cows Avg DMI= 20.2 kg/d Alfalfa/corn silage Avg Mg; 0.27%, 57 g/d K: 1 to 2.7% **Slope = -3.1** Mostly dry cows 8.8 kg/d Grass/suppl. K 0.45%, 42 g/d 1.2 to 3.1% (7.5)

Magnesium

- 1. Absorbed from rumen
- Real world antagonists
 K
 - LCFA (not big)
 - Rumen ammonia (RDP)
 Acute vs. chronic
- 3. Minimal homeostatic control of absorption

Feeds are better than we thought Supplements are worse than we thought

Mg Availability from 4 sources of MgO

Uncertainty increases risk Formulation must consider risk

Summary

1. Uncertainty and risk management justifies **moderate** overfeeding of MANY minerals

Moderate = +20 to 50% of NRC

2. Safety factors should be farm, mineral, and mineral source specific

3. Consider long term effects of overfeeding

Summary

4. Do **not** ignore minerals in basal ingredients (use means or medians for TM)

5. If specialty TM is more absorbable, capture that value

- feed less
- reduce safety factor
- use when antagonist present

http://dairy.osu.edu

OARDC EXTENSION

Dairy Nutrition Lab